Improved Stormwater Through Street Cleaning

16th Annual EPA Region 6 Stormwater Conference Fort Worth, Texas Wednesday July 30, 2014, 3:45 pm

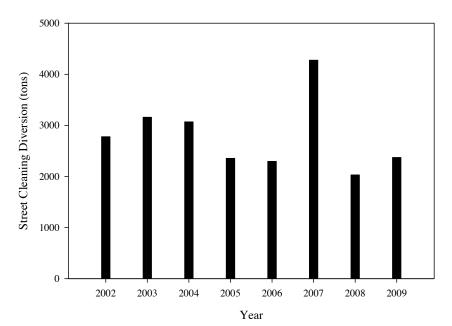
Steven J. Calvillo, M.E.S.

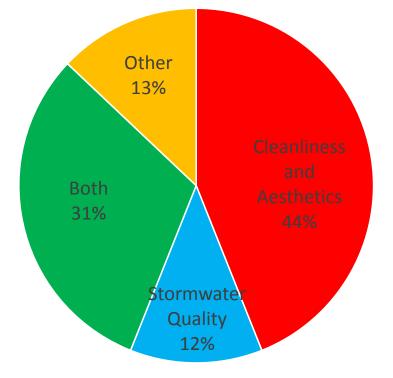
Why Street Dust and Street Cleaning?

Origins of Street Dust

- Soil and sediment
- Vegetation
- Motor vehicles
- Industrial emissions
- Litter
- Animal carcasses

Environmental Contaminants in Street Dust


- Metals
- Organics
- Nutrients
- PM₁₀ and PM_{2.5}


Mass of materials collected by street cleaning in the City of Waco, Texas for 2002-2009.

Street Cleaning Purposes

Cleanliness and Aesthetics vs Stormwater Quality

(Brinkmann and Tobin 2001)

Environmental Regulation – Water Quality

Federal Water Pollution Control Act (FWPCA) 1948

Clean Water Act (CWA) 1972

- Amended FWPCA
- Outlined regulation structure
- Set standards
- Required permits
- Established grants
- Established a planning need

National Pollutant Discharge Elimination System (NPDES)

- Point source pollution
- Non-point source pollution

NPDES Permits

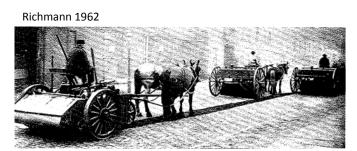
- Phase I (1990) cities ≥ 100,000
- Phase II (1999) suburban areas
- Notice of Intent (NOI) to discharge
 - BMPs
 - Public education and outreach
 - Public participation
 - Enforcement
 - Construction runoff control
 - Post construction runoff control
 - Pollution prevention
 - Measureable goals

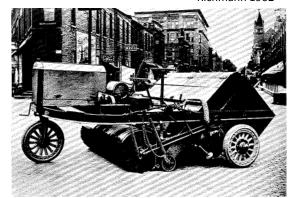
Street Cleaning Technology History and Methods

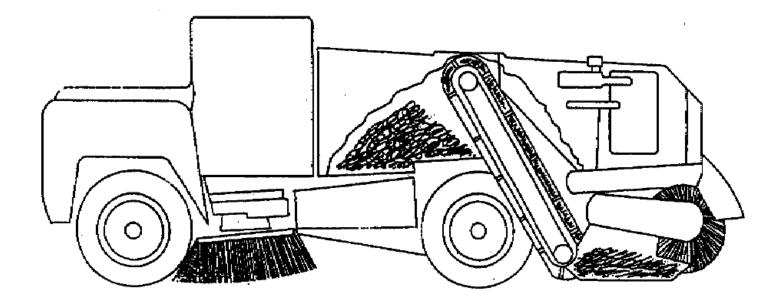
Mechanical

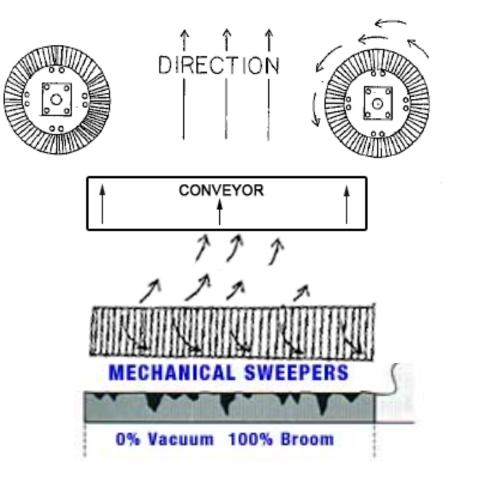
Vacuum

Regenerative Air


High-Efficiency Sweepers


All may use water for dust suppression


All may use gutter brooms


- 1843 Invented in Manchester, England
- 1902 New York City makes serious use of a team drawn sweeper
- 1914 First practical and commercially successful selfpropelled sweeper
- 2005 About 41% of municipalities in the United States and Canada still use mechanical sweepers (Schilling 2005b) Richmann 1962

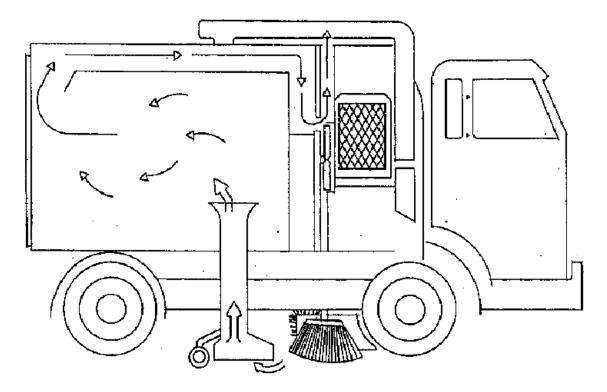
Advantages

Good at picking up:

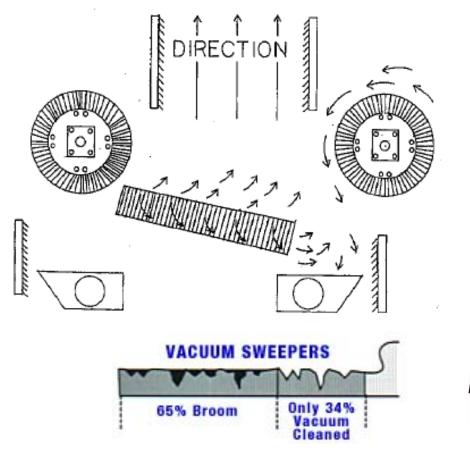
- Bulky, heavy material
- Packed down material
- Wet vegetation

Disadvantages

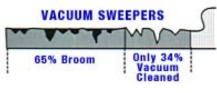
- Less efficient at picking up fine material
- Leaves material in cracks and uneven pavement
- Dusty
- Breaks down larger particles
- Not the best choice for the environment
- Maintenance Cost



- 1920s Invented in Europe
- 1950s Johnston Sweepers
- 1970s Gained popularity



www.epa.gov



Advantages

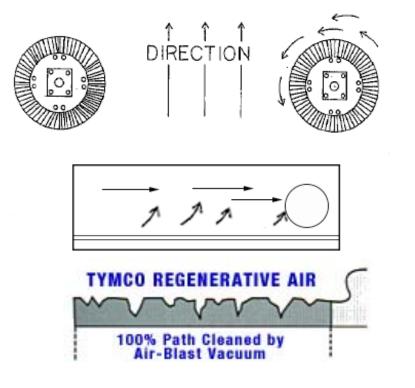
 Better than mechanical sweepers at picking up fine material within 1 meter of the curb

www.tymco.com

Disadvantages

- Not as effective at picking up:
 - Bulky, heavy material
 - Wet vegetation
- Leaves material in cracks and uneven pavement
- Breaks down larger particles
- Dusty
- Exhausts air

Mid 1960s – B.W. Young – Waco, Texas


Original Young "Air-Flo" Truck Mounted Regenerative Air Sweeper – circa 1966

www.tymco.com

Advantages

- Better than mechanical sweepers at picking up fine material
- Wider path
- A deeper clean
- Lower maintenance cost

Disadvantages

- Not as effective at picking up:
 - Bulky, heavy material
 - Wet vegetation
- Uneven pavement may cause fugitive dust losses

High Efficiency Sweepers

1997 – "High efficiency" coined by Sutherland

- Control PM₁₀ & PM_{2.5}
- Use media filters for additional dust control
- Most are designed with the ability to sweep without water
- 1995 EnviroWhirl
- 1970s Some sweepers used filters not high efficiency
- 1984 TYMCO Model 600DC

High Efficiency Mechanical

www.elginsweeper.com

www.elginsweeper.com

High Efficiency Vacuum

http://www.henryequipment.com/13 60/Details.aspx

High Efficiency Regenerative Air

www.tymco.com

Early Street Sweeper Studies

Lee et al. (1959) - U.S. Naval Radiological Defense Laboratory

Effectiveness of removing dry fallout material

Sartor and Boyd (1972) – US EPA – Review

- Vacuums are more efficient than mechanical sweepers
- Wide range of efficiencies (11-78%)

Early Street Sweeper Studies

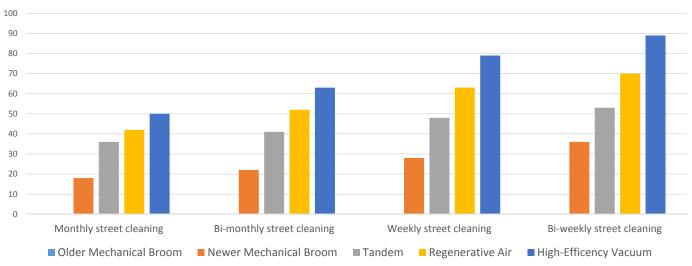
Pitt (1979) – US EPA San Jose, CA "real world" study

- Established testing procedure
- Sweepers are more effective at picking up larger particles

Athayde et al. (1983) Nationwide Urban Runoff Plan (NURP)

- 1978-1983
- 28 locations
- \$30 million (\$106 million in today's dollars)
- Constituent reductions never exceeded 50% in event mean concentrations

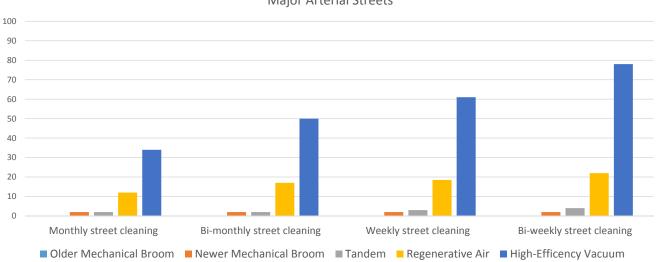
"Contrary to Conventional Wisdom, Street Sweeping Can be an Effective BMP"


Sutherland and Jelen (1997)

- Determined that newer street cleaning technology is more effective than it was during the NURP era
- Simplified Particulate Transport Model (SIMPTM)
- TSS washoff reduction
- Single family residential streets
- Arterial streets
- Portland, Oregon

Sutherland and Jelen (1997)

(Adapted from Sutherland and Jelen 1997)



Average Percent Reduction of Total Suspended Solids Washoff Single Family Residential Streets

Sutherland and Jelen (1997)

(Adapted from Sutherland and Jelen 1997)

Average Percent Reduction of Total Suspended Solids Washoff Major Arterial Streets

Toronto Clean Roads to Clean Air (2005)

- Routinely exceeding Ambient Air Quality Criteria and Canada-wide Standards for PM₁₀ and PM_{2.5}
- PM₁₀ identified as a toxic substance May 2000
 - Canadian Ministers of Health
 - Minister of the Environment
- PM causes respiratory and cardiovascular problems
- PM + Ozone = Smog
- Mechanical sweeping contributes to PM

PM Sweeper Performance Test

- 80 x 11 m enclosed tent
- Two 2.75 x 30 m strips of calcium carbonate powder
- Mean diameter of 3 μm and total weight of about 270 kg
- Aged pavement with cracks and potholes.
- Water was not used
- Used LIDAR to measure ambient air PM

PM Performance Test

DI TORONTO

Transportation Services Toronto Environment Office

PM₁₀ / PM_{2.5} Street Sweeper Efficiency Test - 2005

PM10/ PM2.5 Street Sweeper Efficiency Test - 2005

Side-View (Stevanovic-Briatico 2007)

Environmental Technology Verification Canada (ETV) Verified Sweepers

- High Efficiency Regenerative Air 1 (2005) >90%
- High Efficiency Regenerative Air 2 (2008) 89% (±2.1)
- High Efficiency Regenerative Air 3 (2008) 81.8% (±3.6)
- High Efficiency Mechanical (2008) 88.1% (±2.9)

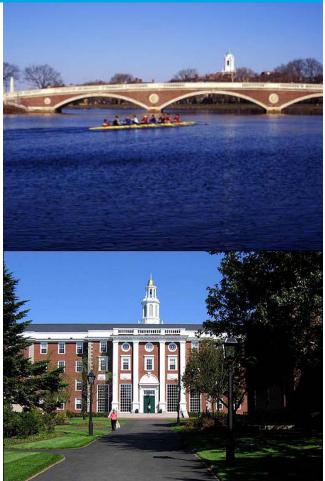
Rochfort et al. (2007)

Sweeper Type	Speed	>2,000 <i>µ</i> m	64-2,000 <i>μ</i> m	<64 µm
Older Regenerative Air	8-15 km/hr	0%	0%	0%
Conventional Mechanical	8-15 km/hr	58%	0%	0%
Newer High-efficiency Regenerative Air	5-8 km/hr	88%, 73%	62%	35%

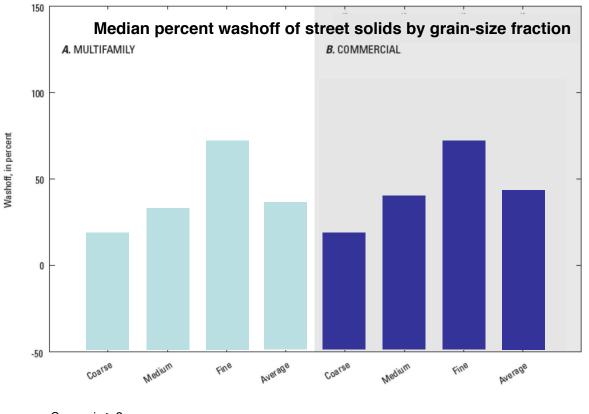
USGS – Madison, WI

Selbig and Bannerman (2007)

- Mechanical
 - 5% pick-up efficiency
 - 20% reduction in average basin street-dirt yield
- Regenerative air
 - 25% pick-up efficiency
 - 76% reduction in average basin street-dirt yield
- Vacuum
 - 30% pick-up efficiency
 - 63% reduction in average basin street-dirt yield



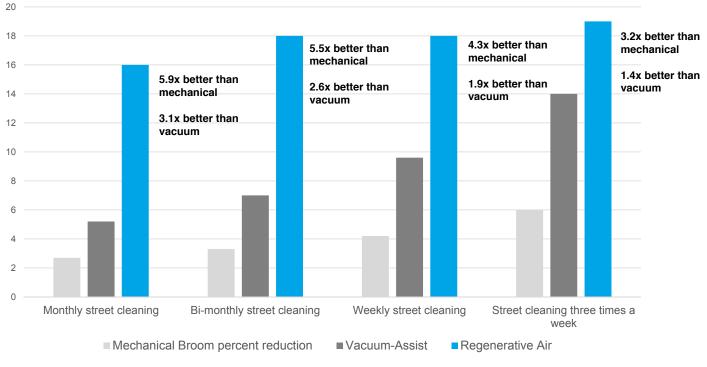
USGS – Cambridge, MA


- Lower Charles River Basin exceeds Total Maximum Daily Load (TMDL) of phosphorous (P)
- A **Total Maximum Daily Load** (TMDL) is a limit set by an environmental regulatory agency for a given pollutant that a body of water can receive while still meeting water quality standards.
- MassDEP expects City of Cambridge, Massachusetts to reduce P contributions by more than 65%

Sorenson (2013)

USGS – Cambridge, MA

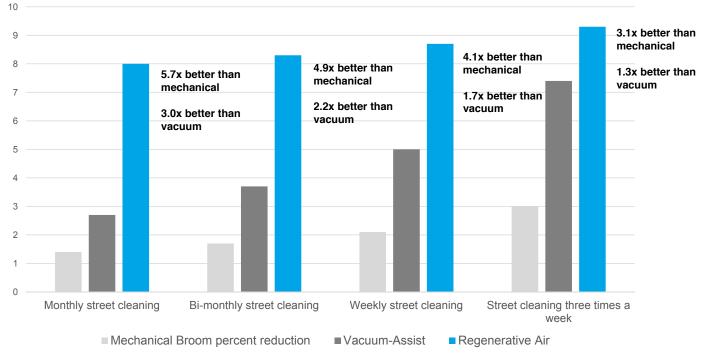
USGS – Cambridge, MA


Sorenson (2013)

- High-efficiency regenerative air sweeper
 - Median removal efficiency
 - Multifamily about 82%
 - Commercial about 78%
 - Total Phosphorus (P) reductions
 - Multifamily about 82%
 - Commercial about 62%
- Source Loading and Management Model (SLAMM)
 - Compare Regenerative Air to Mechanical and Vacuum sweepers
 - Reductions of Solids
 - Reductions of P

SLAMM Results

Total Percent Solids Reduction to Stormwater



Sweeping with a regenerative air sweeper monthly is 2.7x more effective at reducing solids than sweeping with a mechanical sweeper three times a week and 1.1x more effective at reducing solids than sweeping with a vacuum-assist sweeper three times a week.

SLAMM Results

Total Percent Phosphorus Reduction to Stormwater

Sweeping with a regenerative air sweeper monthly is 2.7x more effective at reducing phosphorus than sweeping with a mechanical sweeper three times a week and 1.1x more effective at reducing phosphorus than sweeping with a vacuum-assist sweeper three times a week.

Conclusions

- Street cleaning can be an effective BMP
- Newer technology seems to be more effective
- How effective depends on many variables
 - climate and geology
 - cleaning frequency
 - street surface type
 - amongst manufacturers
 - testing parameters

Q&A

